1 Bocko M F, Onofrio R. On the measurement of a weak classical force coupled to a harmonic oscillator: Experimental progress. Rev Mod Phys, 1996, 68: 755-799
2 Arcizet O, Cohadon P-F, Briant T, et al. High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. Phys Rev Lett, 2006, 97: 133601
3 Cole G D, Aspelmeyer M. Cavity optomechanics: Mechanical memory sees the light. Nat Nanotech, 2011, 6: 690-691
4 Li M, Tang H X, Roukes A L. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat Nanotech, 2007, 2: 114-120
5 O’Connell A D, Hofheinz M, Ansmann M, et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature, 2010,464 : 697-703
6 Chan J, Mayer Alegre T P, Safavi-Naeini A H, et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 2011,478 : 89-92
7 Romero-Isart O, Pflanzer A C, Blaser F, et al. Large quantum superpositions and interference of massive nanometer-sized objects. Phys Rev Lett, 2011, 107: 020405
8 Brooks D W C, Botter T, Schreppler S, et al. Non-classical light generated by quantum-noise-driven cavity optomechanics. Nature, 2012,488 : 476-480
9 Grölacher S, Hammerer K, Vanner M R, et al. Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature, 2009, 460: 724-727
10 Thompson J D, Zwickl B M, Jayich A M, et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature,2008, 452: 72-75
11 Sankey J C, Yang C, Zwickl B M, et al. Strong and tunable nonlinear optomechanical coupling in a low-loss system. Nat Phys, 2010, 6:707-712
12 Marcos G E, Luz da, Anteneodo C. Nonlinear dynamics in meso and nano scales: Fundamental aspects and applications. Phil Trans Roy Soc A, 2011, 369: 245-259
13 Lifshitz L, Cross M C. Nonlinear dynamics of nanomechanical resonators. In: Radons G, Rumpf B, Schuster H G, eds. Nonlinear Dynamics of Nanosystems. Weinheim: Wiley-VCH Verlag, 2010. 221-266
14 Craighead H G. Nanoelectromechanical Systems. Science, 2000,290 (5496): 1532-1535
15 Hertzberg J B, Rocheleau T, Ndukum T, et al. Back-action-evading measurements of nanomechanical motion. Nat Phys, 2010, 6: 213-217
16 Metzger C, Ludwig M, Neuenhahn C, et al. Self-induced oscillations in an optomechanical system driven by bolometric backaction. Phys Rev Lett, 2008, 101: 133903
17 Li M, Pernice W H P, Xiong C, et al. Harnessing optical forces in integrated photonic circuits. Nature, 2008, 456: 480-484
18 Peano V, Thorwart M, Nonlinear response of a driven vibrating nanobeam in the quantum regime. New J Phys, 2006, 8: 21
19 Steele G A, Httel A K, Witkamp B, et al. Strong coupling between single-electron tunneling and nanomechanical Motion. Science, 2009,325 (5944): 1103-1107
20 Ong F R, Boissonneault M, Mallet F, et al. Circuit QED with a nonlinear resonator: Ac-Stark shift and dephasing. Phys Rev Lett, 2011, 106:167002
21 Purdy T P, Brooks D W C, Botter T, et al. Tunable cavity optomechanics with ultracold atoms. Phys Rev Lett, 2010, 105: 133602
22 Gupta S, Moore K L, Murch K W, et al. Cavity nonlinear optics at low photon numbers from collective atomic motion. Phys Rev Lett, 2007,99 : 213601
23 Huang S, Agarwal G S. Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes. Phys Rev A, 2011, 83: 023823
24 Favero I, Karrai K. Optomechanics of deformable optical cavities. Nat Photonics, 2009, 3: 201-205
25 Karabalin R B, Lifshitz R, Cross M C, et al. Signal amplification by sensitive control of bifurcation topology. Phys Rev Lett, 2011, 106:094102
26 Cheung H K, Law C K. Nonadiabatic optomechanical Hamiltonian of a moving dielectric membrane in a cavity. Phys Rev A, 2011, 84: 023812
27 Ludwig M, Kubala B, Marquardt F. The optomechanical instability in the quantum regime. New J Phys, 2008, 10: 095013
28 Rugar D, Grter P. Mechanical parametric amplification and thermomechanical noise squeezing. Phys Rev Lett, 1991, 67: 699-702
29 Junho Suh, LaHaye M D, Echternach P M, et al. Parametric amplification and back-action noise squeezing by a qubit-coupled nanoresonator. Nano Lett, 2010, 10: 3990-3994
30 Turner K L, Miller S A, Hartwell P G, et al. Five parametric resonances in a micromechanical system. Nature, 1998, 396: 149-152
31 Mancini S, Tombesi P. Quantum noise reduction by radiation pressure. Phys Rev A, 1994, 49: 4055-4065
32 Dorsel A, McCullen J D, Meystre P, et al. Optical bistability and mirror confinement induced by radiation pressure. Phys Rev Lett, 1983, 51:1550-1553
33 Gozzini A, Maccarone F, Mango F, et al. Light-pressure bistability at microwave frequencies. J Opt Soc Am B, 1985, 2: 1841-1845
34 Jayich A M, Sankey J C, Zwickl B M, et al. Dispersive optomechanics: A membrane inside a cavity. New J Phys, 2008, 10: 095008
35 Buchmann L F, Zhang L, Chiruvelli A, et al. Macroscopic tunneling of a membrane in an optomechanical double-well potential. Phys Rev Lett, 2012, 108: 210403
36 Merkin D R. Introduction to the Theory of Stability. New York: Springer-Verlag, 1997
37 Kippenberg T J, Rokhsari H, Carmon T, et al. Analysis of radiationpressure induced mechanical oscillation of an optical microcavity. Phys Rev Lett, 2005, 95: 033901
38 Carmon T, Cross M C, Vahala K J. Chaotic quivering of micron-scaled on-chip resonators excited by centrifugal optical pressure. Phys Rev Lett, 2007, 98: 167203
39 Kozinsky I, Postma H W Ch, Kogan O, et al. Basins of attraction of a nonlinear nanomechanical resonator. Phys Rev Lett, 2007, 99: 207201
40 Nunnenkamp A, Børkje K, Harris J G E, et al. Cooling and squeezing via quadratic optomechanical coupling. Phys Rev A, 2010, 82:021806 (R)
41 Milburn G J, Walls D F. Quantum nondemolition measurements via quadratic coupling. Phys Rev A, 1983, 28: 2065-2070 |